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Why are HABs so Desirable?

- At the balloon altitude (>25 km) the environment

IS near space-like Coherence length
- Offers imaging nearly free of atmospheric 2 [==E (,.;.,m,;
degradation (atmospheric seeing) | [EEETM 8
» Low wind speeds T 3
- Large coherence lengths (>8m @ 25km altitude) 1| 7 Anignatiue, stationkeeping
- Offers imaging in spectral bands completely 01 = s e e
blocked by the atmosphere for ground based 220 3 77
observations Altitude (km)
- The cost of a balloon mission is much less than R
a space mission A
- One or more such missions flown per year g -
- Attractive for scientists in lean budget times i e g .
L -

Temperature (°C) High-Altitude Platforms for Wireless
Communications, A.A. Zavala et.al.
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Environmental Challenges

- Thermal

- Aberrations and misalignments

- Difference between STABLE hot and cold cases was ~80C
- Vibrational

- Motors and reaction wheels with high frequency content
- STABLE closed loop system with high bandwidth (~50Hz)



BIT-STABLE Overview
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BIT-STABLE Mission Concept
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STABLE Objectives

STABLE is the payload/fine control stage for a technology demonstration that will
demonstrate subarcsecond pointing stability from a balloon platform for
applications to balloon-borne astronomy.

- Demonstrate 0.1 arcsec stability for at least 60 seconds
(1-o per axis), assuming a 2 arcsecond outer stage

X . Using a point source of light
mmanam - |n the 400-900 nm band

v T "rcmnsul
SNR=5 . With an SNR less than or equal to 25

@ - On a balloon-borne platform above an altitude of 25 km.






STABLE Hardware

Telescope (TEL)
Equinox Interscience, Custom
PDM: Mike Borden, 382B




Telescope Design
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IOBA Coponents

Harness (HRN)
JPL In-House, John
Maciejewski, 349D
PDM: Carson Umsted, 349D

Attitude Rate Sensor (ARS)
JPL’s Balloon Initiative
(Kurt Liewer)

Applied Technology Associates
Multi-Axis ARS Dynapak
PDM: Herrick Chang, 3443

Fine Guidance Camera
Computer (FGCQC)
Advantech PCM-9363,
] ACK-AOO1E chassis
¥ PDM: Carson Umsted, 349D

Command and Data
2z Handling Assembly (CDH)
SpaceMicro P400, ADC/DAC,
Ethernet, Power Card
PDM: Carson Umsted, 349D

Power Distribution Unit
(PDU),
PCC: JPL In-House,
PSC: SpaceMicro
PDM: Carson Umsted, 349D 10




IOBA Components

Black Kapton Tape (THR)
JPL In-House
PDM: Hared Ochoa, 353K

Fast Steering Mirror (FSM)
Physik Instrumente Actuator S-330
Edmund Optics Mirror 64-019 Custom
PDM: Mike Borden, 382B

FSM Electronics (FSM ELEC)
JPL In-House Chris Shelton, 383F
PDM: Herrick Chang, 3443

Fold Mirror (FDM)
JPL In-House SIM Testbed
PDM: Mike Borden, 382B

Fine Guidance Camera (CAM)
University of Durham,
(Richard Massey)
Basler A2320
PDM: Herrick Chang, 3443

Refocusing Stage (RFS)

Zaber Technologies Inc.
T-LSMO50A-SV1

PDM: Mike Borden, 3828 11




IOBA Components

Bipod Mount to Telescope
JPL In-House
PDM: Mike Porter, 382B

Telescope Stiffener Plate
Equinox Interscience,
JPL Design Modifications
PDM: Mike Borden, 382B

Optical Bench Assembly (OBA)
JPL In-House
PDM: Mike Porter, 382B

Heater Assembly 1&2
MINCO Polyimide Thermofoil
Honeywell 3200 Series Thermostats
PDM: Hared Ochoa, 353K

Temperature Sensors (PRTs)
Honeywell HRTS PRTs

Ohmite 43F7K5E 7.5 kilo-ohm Resistors

PDM: Hared Ochoa, 353K

Flight Software (FSW)
JPL In-House
PDM: Aadil Rizvi, 349G

Pointing Control Algorithms (PCS ALG)
JPL In-House
PDM: Milan Mandic, 3443 12




Control Loop

_ Actuators! Sensors!
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Error Budget

Total Pointing
1 00 mas (lo, per axis in tip.tilt)
RSS
Payload Control Error Payload Knowledge Error
86 mas 50 mas
Flex Mode FSM Controller | | LAPPing/ Mapping/ || o1 iroiding || FSM Sensing ARS
. Alignment Alignment
Disturbances Performance Error Performance Performance
Control Knowledge
10 mas 60 mas 30 mas |
DAC Time Optical Camera ADC

Performance Delays Performance Performance Performance




STOP Analysis Pipeline

Environmental_’
Parameters

Element/ Region
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Avionics Hardware Limitations
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and Sigfit Post-Processing
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Deformation of
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Mechanical
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STABLE Predicted Performance

STR-THR-OPT CDH-FSW-PCS
Optical Performance at Float High-Bandwidth Loop

Key Perf. Strehl Ratio: 0.376 to 0.739 Pointing Stability: 94.5 mas
Spec Target: 0.6 Target: 100 mas

* PM-to-SM spacing (1:36 change « ADC noise / effective bits (12

_ In spacing to back focus distance) effective bits instead of 14 led to

Major * Gravity sag at high elevation ~30 mas of pointing stability hit)
Sensitivities angles causes worse performance ||+ Acquisition and centroiding are

* Large thermal range (80 degC) sensitive to high noise levels

leads to spread of Strehl




Ambient Lab Disturbance Environment Test

Centroid position

Caontrel Off ; Cantral On

0 100 200 300 400 500

0 100 200 300 400 500 600
Time (s)

2D centroid position error

Control Off

Y position (pixels)

Control On

-0.5 0 0.5
X nosition (nixels)

0.13 as = 1 pixel




Stinger @0.25 Hz Disturbance Environment Test
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Conclusions

- STABLE tackles sub arcsecond pointing stability

- Major challenges
- Large variation in predicted thermal environment
- Implementation of high bandwidth control loop

- STABLE can achieve 0.945 arc second [over 60 sec, 10]
- STABLE was tested in a lab environment
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EXTRA MATERIAL




BIT/STABLE as a Stepping Stone

Fine pointing technology: High Altitude Balloons:
POINTING Enables high precision Enable near-space PLATFORM
pointing environmental conditions

BIT-STABLE
Facilitates Exo-planet .
exploration, - -~
coronagraphs s

Weak lensing and

study of dark matter
and dark energy

‘ [ Sl @ } Planetary
galaxy

) Science
formation

BIT-STABLE will develop and demonstrate the fine
iInstrument pointing capability



STABLE Payload
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STABLE Payload
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STABLE CDH Diagram
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Key I&T Activities: Telescope Alignment







STABLE Objectives

Design to prove 0.1 arcsec stability for at least 60 seconds
- 1-0 each axis
- given coarse-stage pointing to within 2 arc sec 1-o for at least 120

seconds.
- Use a point source of light

BN Wl - Use light within the 400-900 nm band
psignal .
SNR=3"" . With SNR less than or equal to 25
- On a balloon-borne platform above an altitude of 25 km.

Elsss B @

Minimum Success
- Closed loop tracking of target in lab environment
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STABLE L1s today

lgnal

I'IO]SE.'

Design to prove 0.1 arcsec stability for at least 60 seconds
~ v 1-0 each axis

v given coarse-stage pointing to within 2 arc sec 1-o for at least 120
seconds.

v'"Use a point source of light

v'Use light within the 400-900 nm band

v'With SNR less than or equal to 25

X On a balloon-borne platform above an altitude of 25 km.

Bl Bl @

Minimum Success
v Closed loop tracking of target in lab environment
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STABLE Throughout the Years

At PMSR, Feb 2013 At PDR, Nov 2013 At CDR, Aug 2014




Resource
Pointing

Technical Resources

Pointing Stability
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Summary of Full STOP Analysis

Strehl | Error RMS
Flight Conditions Ratio (mas)
Tip Tilt
Case 3 = Nominal Beginning of Night @ 25 deg elevation angle 0.733 92.1 87.7
Case 1 = Nominal Beginning of Night @ 40 deg elevation angle Il 0.631 94.5 89.4
|Case 2 = Nominal Beginning of Night @ 55 deg elevation angle 0.474
|Case 12 = Nominal End of Night @ 25 deg elevation angle 0.694 92.0 87.7
|Case 10 = Nominal End of Night @ 40 deg elevation angle l 0.573 92.6 87.4
|Case 11 = Nominal End of Night @ 55 deg elevation angle 0.444
|Case 6 = Worst Case Hot @ 25 deg elevation angle 0.739 93.7 89.2
|Case 4 = Worst Case Hot @ 40 deg elevation angle 0.65 90.9 86.2
Case 5 = Worst Case Hot @ 55 deg elevation angle 0.492 92.0 86.0
ase 9 = Worst Case Cold @ 25 deg elevation angle 0.647 93.5 88.9
|Case 7 = Worst Case Cold @ 40 deg elevation angle 0.528 91.6 86.5
|Case 8 = Worst Case Cold @ 55 deg elevation angle 0.376 93.8 84.0

Analysis shows that STABLE would meet its L1 objectives
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STABLE Error Budget

L1 1232 Total Pointing
100 mas 64.0 mas
(10, per axis in tip,tilt)
A
L2
Control Error RSS 7377 Knowledge Error
86 mas 50 mas
30% margin 30% margin ‘)

PLD Control

9641 PLD Knowledge

35 mas 23.7 mas

7402 Centroiding Error

30 mas
[ |

Flex Mode Other PCS/CDH/ .
L4 FSM Controller FSM Sensing
Performance Performance
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